3.564 \(\int \frac{1}{a+b x^n+c x^{2 n}} \, dx\)

Optimal. Leaf size=124 \[ -\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{-b \sqrt{b^2-4 a c}-4 a c+b^2}-\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{b \sqrt{b^2-4 a c}-4 a c+b^2} \]

[Out]

(-2*c*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])])/(b^2 - 4*a*c - b*Sqrt[b^
2 - 4*a*c]) - (2*c*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(b^2 - 4*a*
c + b*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.0629608, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {1347, 245} \[ -\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{-b \sqrt{b^2-4 a c}-4 a c+b^2}-\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{b \sqrt{b^2-4 a c}-4 a c+b^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^n + c*x^(2*n))^(-1),x]

[Out]

(-2*c*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])])/(b^2 - 4*a*c - b*Sqrt[b^
2 - 4*a*c]) - (2*c*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(b^2 - 4*a*
c + b*Sqrt[b^2 - 4*a*c])

Rule 1347

Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, In
t[1/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c}, x] && EqQ[n
2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{1}{a+b x^n+c x^{2 n}} \, dx &=\frac{c \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^n} \, dx}{\sqrt{b^2-4 a c}}-\frac{c \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^n} \, dx}{\sqrt{b^2-4 a c}}\\ &=-\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{b^2-4 a c-b \sqrt{b^2-4 a c}}-\frac{2 c x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{b^2-4 a c+b \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.0916139, size = 119, normalized size = 0.96 \[ \frac{x \left (\left (\sqrt{b^2-4 a c}+b\right ) \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )+\left (\sqrt{b^2-4 a c}-b\right ) \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )\right )}{2 a \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^n + c*x^(2*n))^(-1),x]

[Out]

(x*((b + Sqrt[b^2 - 4*a*c])*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + (-b
 + Sqrt[b^2 - 4*a*c])*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]))/(2*a*Sqrt
[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [F]  time = 0.02, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b{x}^{n}+c{x}^{2\,n} \right ) ^{-1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*x^n+c*x^(2*n)),x)

[Out]

int(1/(a+b*x^n+c*x^(2*n)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{c x^{2 \, n} + b x^{n} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n+c*x^(2*n)),x, algorithm="maxima")

[Out]

integrate(1/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{c x^{2 \, n} + b x^{n} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n+c*x^(2*n)),x, algorithm="fricas")

[Out]

integral(1/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{a + b x^{n} + c x^{2 n}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x**n+c*x**(2*n)),x)

[Out]

Integral(1/(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{c x^{2 \, n} + b x^{n} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n+c*x^(2*n)),x, algorithm="giac")

[Out]

integrate(1/(c*x^(2*n) + b*x^n + a), x)